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Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based
physical maps, and provide useful resources for sequencing entire genomes. Drosophila buzzatii is a representative
species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome
evolution, ecological adaptation, and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic
library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert
size of 152 kb and an ∼18× expected representation of the D. buzzatii euchromatic genome. We screened the entire
library with six euchromatic gene probes and estimated the actual genome representation to be ∼23×. In addition,
we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9555 clones, and assembled
them using FingerPrint Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig)
and 670 singletons. Finally, we anchored 181 large contigs (containing 7788 clones) to the D. buzzatii salivary gland
polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with
all the information regarding the high coverage BAC-based physical map described in this paper are available to the
research community.

[Supplemental material is available online at www.genome.org. The following individuals kindly provided reagents,
samples, or unpublished information as indicated in the paper: S. Celniker, B. Negre, and B. Pfeiffer.]

A variety of genomic resources have been developed as part of the
Drosophila Genome Project, including the high-quality sequence
and annotation of the Drosophila melanogaster genome (Adams et
al. 2000; Celniker and Rubin 2003). Comparatively few genomic
resources have been available for other species within the genus
Drosophila. Phylogenetic analyses indicate that two main lin-
eages exist within the Drosophila genus, which diverged ∼60 mil-
lion years ago (Powell 1997; Tamura et al. 2004). One lineage
leads to the Sophophora subgenus with ∼300 species (including D.
melanogaster and D. pseudoobscura), whereas the other one leads
to the subgenera Drosophila (including Drosophila virilis and Dro-
sophila buzzatii) and Idiomyia (Hawaiian species), with ∼700 and
375 described species, respectively (Powell 1997; http://
taxodros.unizh.ch/). Thus, many Drosophila species are relatively
distantly related to D. melanogaster, and genomic resources de-
veloped for this species therefore have a somewhat limited ap-
plicability to them (Segarra et al. 1995; Podemski et al. 2001;
Ranz et al. 2001; González et al. 2002). Fosmid and BAC libraries
for some Drosophila species have been produced or are currently
in production (http://www.genome.gov/; http://tdgc.arl.arizona.
edu/baclibraries.htm). Recently, the genome sequence of Dro-
sophila pseudoobscura became available (Richards et al. 2005), and

whole-genome shotgun sequences of 10 other Drosophila species
are available or in progress (http://rana.lbl.gov/drosophila/
multipleflies.html).

Here, we describe the construction of a BAC library and a
BAC-based physical map of the D. buzzatii genome. D. buzzatii
belongs to the repleta species group of the Drosophila subgenus
(Wasserman 1992), a group comprising ∼100 species that has
been used for studies of ecological adaptation and speciation for
more than 60 years (Spencer 1941; Crow 1942; Wharton 1942;
Barker and Starmer 1982; Barker et al. 1990). Efforts to map the
genome of D. buzzatii began 50 years ago with the comparative
analysis of its salivary gland chromosomes to establish the phy-
logenetic relationships between repleta group species (Wasser-
man 1954, 1962; Ruiz et al. 1982; Ruiz and Wasserman 1993).
This was followed by the linkage mapping of a small number of
visible mutants (Schafer et al. 1993). In the last 10 years, ∼400
DNA markers have been mapped by in situ hybridization to
the D. buzzatii chromosomes (Ranz et al. 1997, 2003; Laayouni
et al. 2000; Casals et al. 2003). No large-insert genomic libraries
or clone-based physical maps were previously available for this
species.

Results and Discussion

Construction of D. buzzatii BAC library

We constructed a BAC library from the D. buzzatii st-1 strain.
High molecular-weight (HMW) DNA was prepared from adults,
partially digested with EcoRI and EcoRI methylase, size frac-
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tioned, and cloned into the pTARBAC2.1 shuttle vector (Hoskins
et al. 2000; Osoegawa et al. 2004). The D. buzzatii BAC library
comprises 18,353 clones arrayed in 48 microtiter plates (see
Methods). We determined the average insert size to be 152 kb, by
EcoRI restriction fingerprinting of 9555 clones (Fig. 1A). The size
distribution is somewhat skewed to the right, which results in a
very high proportion (98.6%) of cloned inserts larger than 100
kb. The size of the genomes of the repleta group species is ∼220
Mb, with ∼70% in the euchromatin (Ranz et al. 2001), thus the
expected redundancy of the library is ∼18�. We hybridized two
gridded filters containing the entire library with six euchromatic
gene probes. The average number of positive clones per probe
was 23, which provides an estimate of the actual representation
of the euchromatin in the library (see Supplemental material).

Fingerprinting and automatic contig assembly

To build a physical map of the D. buzzatii genome, we first fin-
gerprinted and assembled into contigs 9555 BAC clones using

high-throughput methods (Marra et al. 1997; Schein et al. 2004).
The fingerprint data were automatically assembled using Finger-
Print Contigs (FPC) software (Soderlund et al. 1997, 2000) with a
cut-off score of 10�11. This threshold value represents the maxi-
mum allowable probability of a chance match between any two
clones. The automated assembly produced 634 contigs and 516
unmatched clones (i.e., singletons, see Supplemental material for
further details).

Hybridization of BAC clones to salivary gland chromosomes

We hybridized to the D. buzzatii chromosomes 552 clones rep-
resenting 443 contigs. The information from 427 clones giving
one primary hybridization signal was used for map construction.
We also hybridized a subset of 163 BAC clones to the chromo-
somes of Drosophila repleta, another species of the repleta group
whose cytological maps (Wharton 1942) have been used as the
standard reference for all species in this group (Wasserman
1992). The results allowed us to revise the homology between
chromosomes and chromosomal segments of D. buzzatii and D.
repleta (Ruiz and Wasserman 1993) and to reconstruct the D.
buzzatii chromosomes using the D. repleta cytological maps
(Wharton 1942).

An integrated physical map of the D. buzzatii genome

Information from the fingerprint assembly, the cytological local-
ization of BACs, and the library screening with gene probes was
merged to produce an integrated physical map (see Methods).
Manual editing and merging allowed us to reduce the number of
contigs from the initial set of 634 to a final set of 345. Figure 1B
shows the distribution of clones within contigs. The mean num-
ber of clones per contig is 26, and the largest number of clones in
a contig is 351. The fingerprints of a subset of overlapping clones
within each contig were compared, and the size of the genomic
region covered by each contig was estimated. The average contig
size is estimated to be 338 kb (Fig. 1C). Some of the contigs are
quite large (30 contigs are larger than 800 kb), although many
(216) are relatively small (100–300 kb). The largest contig is ∼1.9
Mb.

Using the cytological data, we anchored 181 contigs to the
D. buzzatii chromosomes. These contigs contain 7788 (81.5%) of
the fingerprinted clones (Supplemental Table S1). Maps of the D.
buzzatii chromosomes with the cytological localization of the
427 markers and the 181 contigs they represent are shown in
Figure 2. A complete list of clones and in situ hybridization re-
sults is given in Supplemental Table S2.

The size and cytological span of 15 of the largest contigs
were used to estimate the DNA content per cytological band in
the salivary gland chromosome map. Taking into account the
total number of bands and the total size of the contigs included
in our integrated map (Fig. 2), we estimate that the physical map
covers ∼89% of the euchromatic portion of the D. buzzatii chro-
mosomes. The cytological data indicate that BAC coverage ex-
tends nearly to the telomeres, while pericentric regions are less
well represented, probably because of the high content of repeti-
tive DNA in these regions (Fig. 2).

Unrestricted access to the resources described in this paper is
provided. A database containing all of the fingerprint images and
analyses, clone sizes, contig composition, library screenings, and
in situ hybridization images can be accessed using iCE (Fjell et al.
2003) at http://www.bcgsc.ca/ice. The D. buzzatii BAC library
(CHORI-225) is available from BACPAC Resources (http://

Figure 1. (A) Size distribution of the 9555 Drosophila buzzatii BAC
clones analyzed by fingerprinting. (B) Distribution of clones in contigs
and (C) contig sizes for the 345 contigs in the fingerprint map.
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Figure 2. Integrated BAC-based physical map of the Drosophila buzzatii genome. (We consider the cytological map to be a kind of physical map.) Vertical lines indicate the relative position of the 427 BAC clones that produced a primary hybridization signal and represent 181 contigs.
Singletons are represented as discontinuous vertical lines. Clone names are shown above the chromosomes. Clone names separated by a bar were hybridized individually. Clone names with an asterisk indicate that two or three clones were hybridized as a mixture. The contigs to which the
hybridized clones belong are represented by short horizontal segments below the chromosomes along with the contig number. The length of these segments is roughly proportional to contig size. See Supplemental Table S2 for details.



bacpac.chori.org/). We expect that the BAC library and high-
coverage BAC-based physical map will be highly useful resources
not only for those working in D. buzzatii as a model system but
also to all those interested in the comparative analysis of ge-
nomes. The usefulness of this BAC-based physical map extends to
many repleta group species, because their cytological relation-
ships have been determined using D. repleta chromosomes as a
reference (Wasserman 1992). In addition, the library has already
been used to successfully sequence part of the Hox gene complex
of D. buzzatii (Negre et al. 2005). Finally, the D. buzzatii map may
help in the assembly of some of the Drosophila genomes currently
being sequenced, particularly that of Drosophila mojavensis,
which also belongs to the repleta species group.

Methods

Flies
The D. buzzatii strain used to construct the BAC library and to
map BACs by in situ hybridization (st-1) is fixed for the standard
arrangement in all chromosomes and was produced by Betrán et
al. (1998). The D. repleta stock used for in situ hybridization was
no. 1611.6 from the National Drosophila Species Resource Center
(Bowling Green, OH).

BAC library construction
The library was constructed according to the improved methods
described in detail in Frengen et al. (1999) and Osoegawa et al.
(1999, 2004). HMW DNA was prepared from 3 g of adult flies,
including equal numbers of females and males, as described in
Hoskins et al. (2000). The partially digested HMW DNA was size-
fractionated by Pulse Field Gel Electrophoresis, and fractions cor-
responding to 150–250-kb DNA fragments were recovered by
electroelution and cloned in pTARBAR2.1. See Supplemental ma-
terial for further details.

In situ hybridization of BAC clones
In situ hybridizations were carried out as in González et al.
(2002). Probes were labeled with biotin-16-dUTP. The hybridiza-
tion temperatures were 37° for D. buzzatii chromosomes and 25°
for D. repleta chromosomes. We hybridized 552 BAC clones to D.
buzzatii salivary gland chromosomes; 506 gave positive results,
and 427 producing a single primary hybridization signal were
used in physical map construction (Supplemental Tables S1 and
S2). Nine clones gave two signals; these may represent chimeric
clones or mixtures of two clones caused by cross-well contami-
nation. This low rate (1.6%) is in agreement with the low level of
chimerism observed in other BAC libraries (Osoegawa et al.
2001). In total, 70 clones gave more than two hybridization sig-
nals and/or hybridized to the pericentromeric regions and the
microchromosome, probably because of repetitive DNA content.
The density of transposable elements increases near Drosophila
centric heterochromatin (Kaminker et al. 2002). Clones from
such repeat-rich regions cannot be assigned to a particular chro-
mosomal site. Thus, there is a relative scarcity of markers in our
physical map near the centric heterochromatin, especially on the
X-chromosome (Fig. 2). Examples of the different types of hy-
bridization results are shown in Supplemental Figure S1.
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